

Dépistage et prise en charge

Une opportunité en santé mondiale

"Through cost-effective, evidence-based interventions, including human papillomavirus vaccination of girls, screening and treatment of precancerous lesions, and improving access to diagnosis and treatment of invasive cancers, we can eliminate cervical cancer as a public health problem and make it a disease of the past."

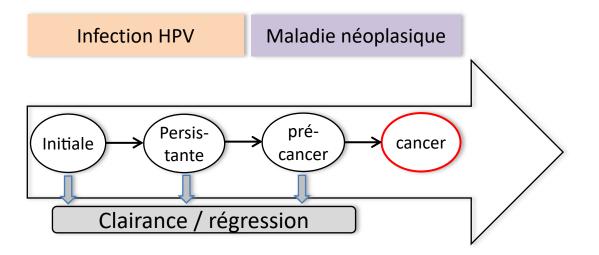
Dr Tedros Adhanom Ghebreyesus, Director-General, World Health Organization

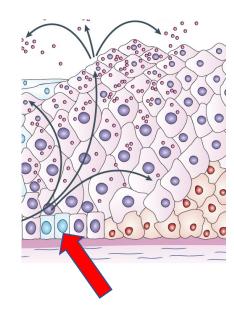
Strategie basée sur 3 piliers:

• Vaccination 90%

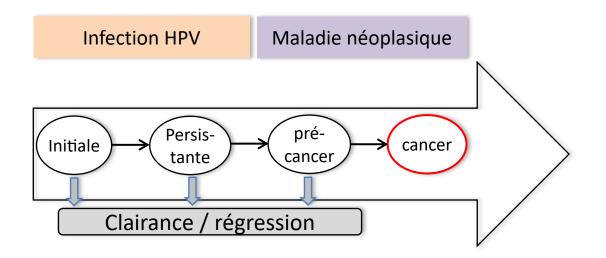
Dépistage 70%

• Traitement 90%

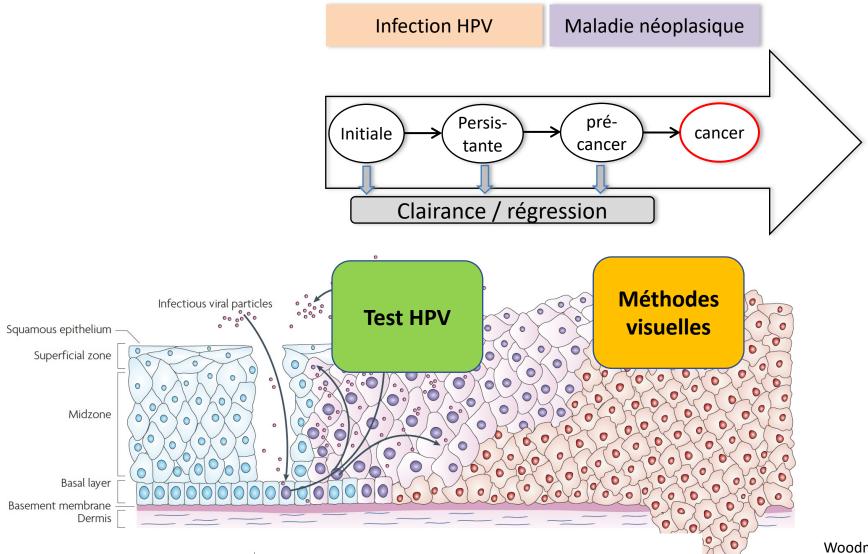



Points abordés

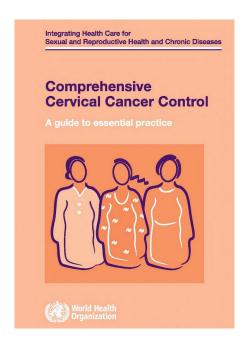
- Infection par HPV et CCU
- Méthodes visuelles de dépistage
- Dépistage par test HPV
- Le triage post-test HPV
- Traitement et surveillance post-test


HPV et CCU

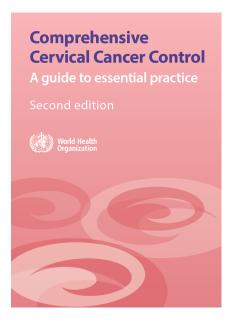
HPV et CCU



Prolifération et immortalisation des cellules

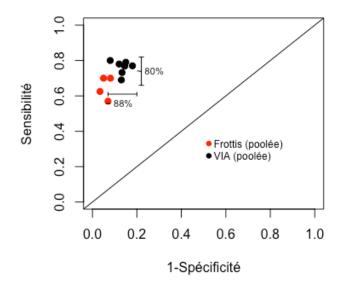

HPV et CCU

Enicomo



Dépistage: Inspection visuelle (VIA / VILI)

« Because of its high level of performance, countries should ideally transition to HPV testing as the primary method of screening for cervical cancer. »


Dépistage: Inspection visuelle (VIA / VILI)

- Sankaranarayanan R, et al Lancet 2007
 - RCT en grappe (Inde n= 31 000)
 - de 25% des cancers et de 35% de la mortalité
- Shastri et al. Int J Cancer 2014:
 - RCT en grappe (Inde n = 75 000/bras) VIA tous les 24 mois par Agents de santé vs bras contrôle suivi pendant 12 ans.
 - mortalité (IRR 0.69, p = 0.03) mais pas de l'incidence CCU (0,97 [0.80 1.19])
- Sankaranarayanan R, et al. N Engl J Med 2009
 - RCT en grappe, 4 bras: VIA, frottis, test HPV et contrôle (n~30 000/ bras)
 - Pas de diminution de la mortalité (0.86 [0.60–1.25]) Incidence CCU (1.04 [0.72–1.49]) dans le bras VIA
- Denny et al., JAMA 2005
 - RCT (Afrique du Sud), femmes HIV+ et HIV-, bras VIA + tx immédiat vs tx différé (n = 2200)
 - Ψ prévalence CIN2+ à M6 (37%, p=0,02) et à M12 (p<0,05)
 - ✓prévalence CIN2+ à M36 uniquement chez les femmes HIV+(RR = 0.51 [0.29–0.89]) (Kuhn et al. AIDS 201)

Dépistage: Inspection visuelle (VIA / VILI)

- Sensibilité entre 60% et 70%
 - Sauvaget al. 2011, Arbyn et al. Int J Cancer 2008, Chen et al. 2012, Catarino et al. 2017, Qiao et al. J Gynaecol Obstet Res 2015; Mustafa et al. Int J Gynecol Obstet 2016)
- Sensibilité VILI >VIA (~10%)
- Spécificité entre 80 et 90%
- Mais hétérogéneité ++:
 - Sensibilité des études entre 22% et 91%
 - Grande variabilité inter opérateur
 - CQ difficile
- => Difficultés opérationnelles

Dépistage: Inspection visuelle améliorée

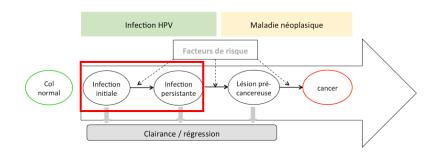
- Smartphone
 - Photo seule:
 - Peu d'impact sur la sensibilité / hétérogénéité (Se ~ 74%, n = 7)
 - Processus de contrôle qualité / monitoring
 - Colposcopy-like: Mobile ODT, AV Magnivisualizer

Dépistage: Inspection visuelle améliorée

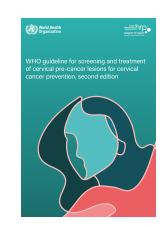
Smartphone

- Photo seule:
 - Peu d'impact sur la sensibilité / hétérogénéité (Se ~ 74%, n = 7)
 - Processus de contrôle qualité / monitoring
- Colposcopy-like: Mobile ODT, AV Magnivisualizer

Intelligence artificielle


- Très bonnes performances théoriques (Xue et al. Int J Cancer 2020)
- Mais de nombreux challenges (Desai et al. 2022)
 - Qualité de l'image
 - Variabilité anatomique

Dépistage: test HPV

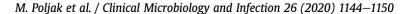


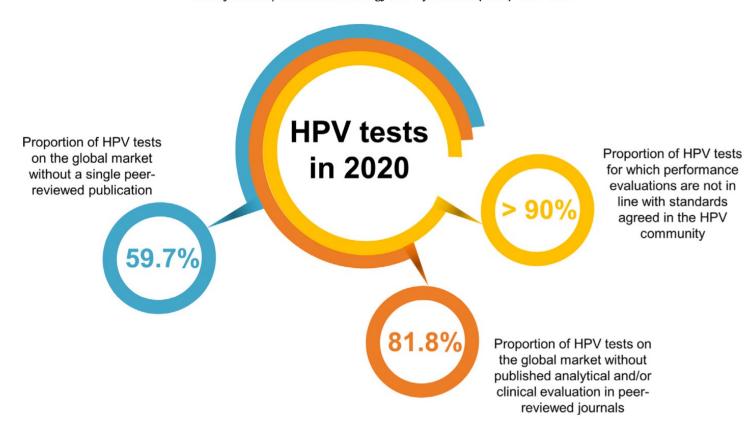
- Infection persistante par HPV = facteur initial du CCU
- Nombreux RCT européens ou US:
 - Analyse poolée de 4 essais européens: ♥incidence CCU IRR 0,60 [0,40 0,89] (Ronco et al. Lancet 2014)
 - Arbyn et al. Vaccine 2006
- Sankaranarayanan R, et al. N Engl J Med 2009
 - **Ψ**incidence CCU (HR: 0,47 [0,32 0,69]) et mortalité (HR 0,52 [0,33 0,83])
- Denny et al. JAMA 2005
 - **Ψ**prévalence CIN2+ à M6 (74%) et à M12 (p<0,05)

Dépistage: test HPV

- Excellente sensibilité (>90%)
- Très bonne reproductibilité
- Possibilité de test sur auto-prélèvement:
 - Meilleure acceptabilité
 - Tests PCR (perte de sensibilité pour tests amplification)

Mais


- Coût élevé
- Spécificité modérée (~90%) => nombreux FP => nécessité d'un triage



Quel(s) test(s) HPV?

Quels tests?

Contents lists available at ScienceDirect

Clinical Microbiology and Infection

journal homepage: www.clinicalmicrobiologyandinfection.com

Systematic review

2020 list of human papillomavirus assays suitable for primary cervical cancer screening

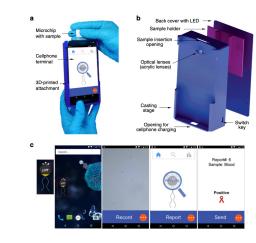
Marc Arbyn ^{1, 2, *}, Marie Simon ³, Eliana Peeters ¹, Lan Xu ^{1, 4}, Chris J.L.M. Meijer ⁵, Johannes Berkhof ⁶, Kate Cuschieri ⁷, Jesper Bonde ⁸, Anja Ostrbenk Vanlencak ⁹, Fang-Hui Zhao ¹⁰, Remila Rezhake ^{1, 10, 11}, Murat Gultekin ¹², Joakim Dillner ¹³, Silvia de Sanjosé ¹⁴, Karen Canfell ^{15, 16}, Peter Hillemanns ¹⁷, Maribel Almonte ¹⁸, Nicolas Wentzensen ^{19, †}, Mario Poljak ^{9, †}

Comparison	Out-come	Relative sensitivity (90% CI)	Relative specificity
Fully validated hrHPV DNA tes	ots		
Abbott RealTime/HC2 or GP5+/	CIN2+	0.99 (0.96-1.01)	1.02 (1.01-1.02)
6+ EIA		,	,
Alinity/HC2	CIN2+	1.05 (0.99-1.10)	1.01 (0.99-1.02)
Anyplex HR/HC2 or GP5+/6+ E	IA CIN2+	1.01 (0.96-1.04)	1.00 (0.99-1.02)
BD Onclarity/HC2 or GP5+/6+ E	IA CIN2+	1.00 (0.97-1.03)	1.00 (0.98-1.01)
Cobas 4800/HC2 or GP5+/6+ EI	A CIN2+	1.00 (0.98-1.03)	1.00 (0.99-1.01)
Cobas 6800/Cobas 4800	CIN2+	0.98 (0.96-1.01)	0.99 (0.97-1.01)
HPV-Risk/HC2 or GP5+/6+ EIA	CIN2+	0.99 (0.96-1.02)	1.02 (1.00-1.04)
PapilloCheck/HC2 GP5+/6+ EIA	CIN2+	0.97 (0.91-1.04)	1.02 (0.98-1.07)
Xpert HPV/HC2 or GP5+/6+ EIA	A CIN2+	1.00 (0.97-1.03)	1.00 (0.98-1.02)
Partially validated tests			
AmpFire/Cobas 4800	CIN2+	1.03 (0.97-1.10)	1.00 (0.99-1.01)
Cervista/HC2	CIN2+	0.98 (0.95-1.01)	1.01 (0.98-1.04)
CLART/mod GP5+/6+ LMNX (sp	o) CIN2+	1.03 (0.95-1.11)	1.00 (0.97-1.02)
CLART/mod GP5+/6+ LMNX (po	c) CIN2+	0.98 (0.94-1.01)	1.08 (1.06-1.11)
EUROArray/HC2 ^a	CIN2+	0.98 (0.93-1.03)	1.00 (0.98-1.03)
GP5+/6+-LMNX/GP5+/6+EIA	CIN2+	1.02 (0.97-1.08)	1.00 (0.98-1.03)
HBRT-H14/HC2 ^a	CIN2+	0.98 (0.93-1.03)	1.01 (0.99-1.03)
Linear Array/HC2	CIN2+	1.02 (0.98-1.06)	1.02 (1.00-1.04)
MALDI-TOF/HC2	CIN2+	0.97 (0.94–1.00)	1.09 (1.01-1.16)
RIATOL qPCR/HC2 ^b	CIN2+	1.05 (0.95–1.16)	1.01 (0.99-1.02)
SeqHPV/Cobas 4800	CIN2+	0.99 (0.92-1.06)	1.00 (0.99-1.01)
Internally validated in-house hrHPV DNA tests			
DH3/HC2	CIN2+	1.02 (0.95–1.09)	1.03 (1.01-1.05)
HPVIR/Cobas 4800	CIN2+	1.02 (0.95-1.09)	1.03 (1.01-1.05)
REALQUALITY RQ-HPV Screen /HC2	CIN2+	1.00 (0.96–1.05)	1.00 (0.97–1.02)
HPV RNA tests			
APTIMA/HC2 or GP5+/6+ EIA	CIN2+	0.97 (0.95-1.00)	1.03 (1.02-1.05)
Pretect HPV-Proofer/HC2	CIN2+	0.78 (0.68-0.89)	1.12 (1.11–1.13)
OncoTect/HC2	CIN2+	0.98 (0.89–1.09)	2.33 (1.96–2.77)
APTIMA/HC2 or GP5+/6+ EIA	CIN2+	0.97 (0.95-1.00)	1.03 (1.02-1.05)
hrHPV DNA tests not reaching validation criteria for cervical cancer screening			
careHPV Test/HC2 ^c	CIN2+	0.86 (0.79-0.94)	1.01 (0.99-1.03)
INNO-LiPA/HC2 ^c	CIN2+	1.01 (0.97-1.06)	0.95 (0.93-0.97)

__7

Biologie moléculaire

- Détection directe (signal amplification)
 - Hybridation
 - Pas de génotypage
 - HC2, CareHPV
- DNA amplification (PCR)
 - Sans génotypage (ex: cervista)
 - Avec génotypage (Ex: Genexpert)
- RNA amplification
 - ARNm (E6/E7) Aptima (Arbyn et al. CID 2022)
- Proteine
 - oncoE6


Source: Cepheid

Approches récentes: LAMP, CRISPR

- Limites de la PCR: coût
- LAMP:
 - pas de cycles et durée ≤1 h
 - mais 1 seul type d'HPV
 - Ex: Ampfire
- CRISPR-cas12
- Dispositifs microfluides / Micromoteurs à ADN...

Check for updates

ARTICLE

DNA engineered micromotors powered by metal nanoparticles for motion based cellphone diagnostics

scientific reports

OPEN A simple and rapid diagnostic method for 13 types of high-risk human papillomavirus (HR-HPV) detection using CRISPR-Cas12a technology

Jiaojiao Gong^{1,6}, Guanghui Zhang^{2,6}, Wangguo Wang³, Liping Liang², Qianyun Li⁴, Menghao Liu⁵, Liang Xue^{1⊠} & Guanghui Tang^{1⊠}

Mode de prelevement

- Auto-prélèvement
 - Arbyn et al. Lancet Oncol 2014

- Prélèvement urinaire
 - Resultats prometteurs: VanKeer et al. J Clin Virol 2021
 - Mais hétérogéneité des études disponibles

Quel triage après un test HPV?

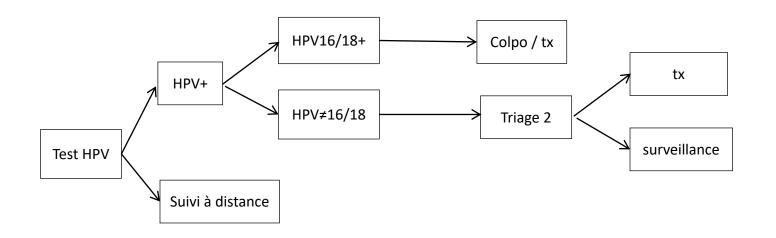
Triage par cytologie

- Cytologie simple
 - Stratégie US et autres
 - Risque de CCU si HPV- frottis-: VIH+ ~ VIH-
- Marquage p16 +/- Ki67
 - Ciblage des cellules avec infection transformante
 - Même sensibilité que frottis mais 🛧 spécificité

Triage par inspection visuelle

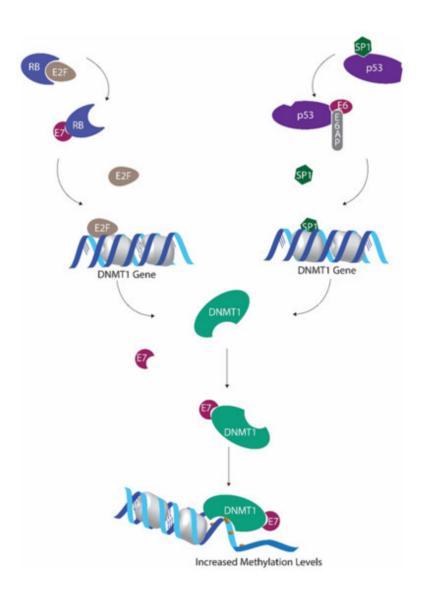
- Des résultats à confirmer
 - Ex: Sens ~ 82% (Muwonge et al. Inde) vs 34% (Tebeu et al. Cameroun)
 - OMS: Sens ~ 64% Spe ~ 79%
- Femmes VIH+:
 - Sens ~ 57% (Kelly et al. 2022)
- IVA aidée?

Source: OMS, 2021



Triage par génotypage partiel

- Génotypage partiel 16/18 +/- 45
 - HPV 16 et 18 associés au CCU + HPV 45 en Afrique
 - Sens ~ 60% & Spé ~ 70% (OMS 2021)
- Génotypage partiel »étendu »
 - 16/18/45 + 31/33/39/52/58
 - Kuhn et al. Sens ~ 91% & Spe ~ 66% (FvVIH)
 - AIMA-CC: Sens ~ 86% & Spe ~ 84%
- Génotypage partiel et 2nd test
 - Amélioration si 2nd triage des femmes HPV≠16/18


Triage par génotypage partiel

- Génotypage partiel et 2nd test
 - Amélioration si 2nd triage des femmes HPV≠16/18
 - Frottis: sens ~ 80% (stratégie US)
 - VIA: Sens ~ 80 à 90%

Triage par marqueurs de méthylation

Triage par marqueurs de méthylation

Patiente

- Ex: PAX1, CADM1, MAL1, MAL, miR-124
- Sens ~ triage par cyto; Sp ~ triage par HPV16/18

HPV

- Surtout L1, L2...
- HPV 16 L1/L2: Sens ~ 77% & Spe ~ 64% (Bowden et al. Ebiomedicine 2019)

Mixte

- Méthode S5 (hôte: EPB41L3, et HPV: HPV16L1, HPV16L2, HPV18L2, HPV31L1, HPV33L2)
- Sens ≥90% & Spe~ 100% pour les K (Banila Int J Cancer 2021)

Opérationalisation

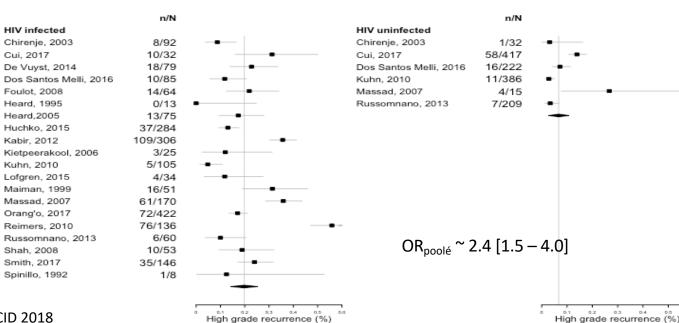
- Beaucoup de challenges techniques
- Variations géographiques (manque d'études africaines)

Traitement et suivi

• Ablation:

- Cryothérapie / thermo-ablation
- Très bonne sureté / efficacité?
- Thermo-ablation + simple logistiquement

• LEEP:


- Permet une analyse histologique
- Mais complications possibles (obstet: prématurité)

Suivi et réccurences

- 5 à 10 % de récurrences après LEEP
- 80% dans les 24 mois
- Suivi très rapproché (~ pendant 2 ans)
- Valeur du test HPV ++
- Mais stratégie chez les femmes VIH++ ou dans les Suds à évaluer

En résumé

- Un arsenal de dépistage en expansion +++
- Il reste à identifier les meilleures séquences de dépistage
- Besoin de POC moins chers +++
- Le traitement et suivi post-traitement reste un domaine où des progrès sont nécessaires

Merci