

Actualités Pharmacologiques

Modèle PBPK de CAB et RPV LA im pdt la grossesse (1)

... de IAS 2023

 Objectif : développer un modèle PBPK (Physiologically-Based PharmacoKinetic) pour prédire la PK plasmatique de CAB et RPV LA im au cours de la grossesse

Méthode

- Modèle PBPK implémenté à partir des données publiées chez des sujets non prégnants pour CAB et RPV (vo et im) (Rajoli RKR et al, J Infect Dis 2019; Spreen W, J Acquir Immune Defic Syndr 2014; Foca M, Pediatr Infect Dis J. 2016; Spreen W, J Acquir Immune Defic Syndr 2014)
- Les paramètres reflétant les modifications anatomiques, physiologiques et métaboliques de la grossesse,
 connus comme facteurs d'influence de la PK, sont ensuite appliqués au modèle PBPK développé
- L'induction de l'UGT1A1 et du CYP3A4 par la progestérone est aussi incluse dans le modèle PBPK
- Dans le modèle PBPK construit, les 3 1ères doses sont injectées pdt le 2ème trimestre et les 3 dernières doses sont injectées pdt le 3ème trimestre font partie des hypothèses

Résultats

Sur la base des simulations, les C_{min} plasma après la 1^{ère} im (dose de charge) sont 29,5 % et 23,0 % plus faibles pdt la grossesse pour CAB et RPV et les C_{min} plasma après la 6^{ème} im sont 31,1 % et 29,2 % plus faibles pdt la grossesse pour CAB et RPV

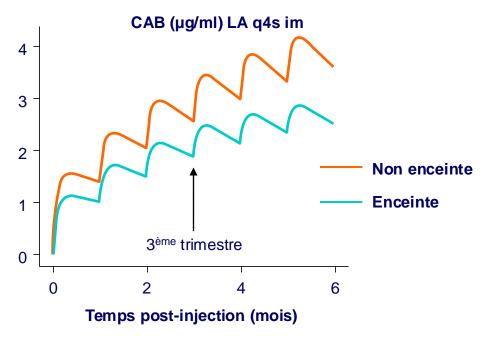
Modèle PBPK de CAB et RPV LA im pdt la grossesse (2)

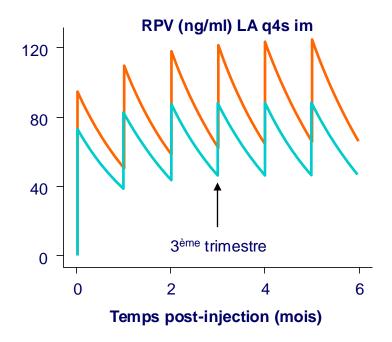
... de IAS 2023

Caractéristiques physicochimiques et PK de CAB et RPV

Paramètres de CAB	Valeur
Masse moléculaire (g/mole)	427
Log P	1,04
Fixation protéique	99,3 %
рКа	10,04
Km/Vmax UGT1A1 (uM, pmol/min/mg)	148/660
Km/Vmax UGT1A9 (uM, pmol/min/mg)	90/200
Protéine majeure de fixation	Albumin

Paramètres de RPV	Valeur
Masse moléculaire (g/mole)	366
Log P	4,32
Fixation protéique	99,7 %
рКа	3,26
CLint CYP3A4 (µL/min/pmol)	2,04
Protéine majeure de fixation	Albumin


Comparaison des paramètres PK simulés et observés chez les femmes non enceintes


	ASC0-t (mg.h/l)	C _{max} (mg/l)	T _{max} (h)		
	Simulé/observé	Simulé/observé	Simulé/observé		
	(Rapport)	(Rapport)	(Rapport)		
RPV					
25 mg vo (état d'équilibre)	2,31/2,25	0,18/0,15	170/172		
	(0,92)	(1,20)	(0,99)		
1200 mg im + 900 mg im	218/206	0,16/0,15	682/792		
	(1,06)	(1,07)	(0,86)		
CAB					
30 mg vo	194/126	2,62/3,48	5,25/2,12		
	(1,54)	(0,75)	(2,47		
100 mg im	785/820	0,26/0,24	294/210		
	(0,96)	(1,08)	(1,40)		
200 mg im	1 570/1 240	0,52/0,31	294/815		
	(1,27)	(1,68)	(0,36)		
400 mg im	3 430/2 870	1,04/0,68	294/1 663		
	(1,20)	(1,53)	(0,18)		
800 mg im	6 010/6 150	2,08/3,83	294/133		
	(0,98)	(0,54)	(2,21)		

Modèle PBPK de CAB et RPV LA im pdt la grossesse (3)

Comparaison des profils PK plasma simulés et observés chez les femmes non prégnantes

- Les réductions d'expositions plasmatiques de CAB et RPV sont probablement liées à l'induction de l'UGT1A1 et du CYP3A4 aux 2^{ème} et 3^{ème} trimestres
- Les auteurs concluent à la nécessité de conduire des études cliniques pour enrichir les données PK aux 2 ème et 3 ème trimestres de grossesse
- Cette attitude est bcp plus prudente que celle d'Atoyebi SA et al, CROI 2022 Abs 686 qui concluait à l'influence minime de la grossesse sur la PK de CAB après CAB LA im sur la base de données PBPK

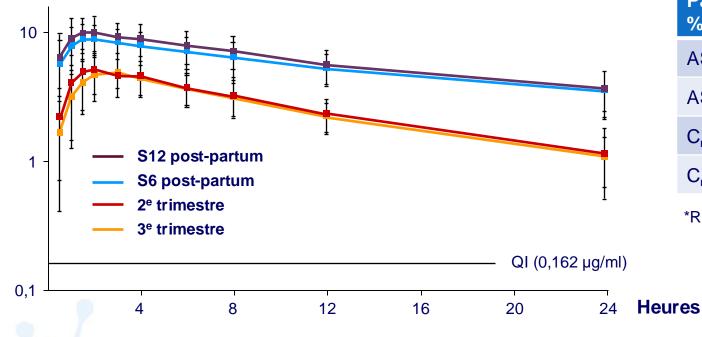
BIC/FTC/TAF pendant la grossesse : PK, efficacité et tolérance (1)

Rationnel

- Malgré une parenté structurale entre BIC et DTG, peu de données pour BIC/FTC/TAF chez la femme enceinte
- Sur un plan PK, BIC est très lié aux protéines plasmatiques et métabolisé par UGT1A1 et CYP3A4,
 ces enzymes subissent d'importantes modifications physiologiques au cours de la grossesse

Objectifs (Essai NCT03960645)

- Etude ouverte PK plasma à l'état d'équilibre, efficacité et tolérance de BIC, FTC et TAF
- 33 femmes sous BIC/FTC/TAF (50/200/25 mg qd) avec CV < 50 c/ml aux 2^{ème} et 3^{ème} trimestres


Méthode

- PK plasma intensives de BIC, FTC et TAF et fixations protéiques de BIC et TAF
- Mesure de TFV-DP dans les PBMC
- Mesure de BIC et TAF dans le sang de cordon à l'accouchement
- Mesures de CV et CD4 et recueil des EI
- Comparaison des PK aux 2ème et 3ème trimestres avec 6 à 12 semaines post-partum

BIC/FTC/TAF pendant la grossesse : PK, efficacité et tolérance (2)

Profils PK Plasma moyens (ET) de BIC (μg/ml) aux 2ème trimestre, 3ème trimestre, et post-partum

Paramètres PK Plasma de BIC

Paramètres PK % RMG* (IC 90 %)	3 ^{ème} T vs S12 PP	3 ^{ème} T vs adulte non prégnant	
ASC _t total	40,6 (36,8 – 44,8)	41	
ASC _t libre	58,8 (52,7 – 65,7)	-	
C _{max}	48,2 (43,0 – 53,9)	87	
C _{min}	29,0 (25,7 – 32,7)	41	

*RMG : rapport des moyennes géométriques

- PK plasma de BIC sont plus faibles aux 2T et 3T vs PP mais diminution du même ordre aux 2T et 3T
- BIC C_{min} restent toujours > 0,162 μ g/ml chez toutes les participantes sauf 1 au 2T, avec maintien CV < 50 c/ml (avec des C_{min} médianes 6,9 et 6,0 x > 0,162 μ g/ml pendant les 2T et 3T, respectivement)
- ASC_t total et libre de BIC au 3T vs S12 PP sont diminuées de 59 % et 41 %, respectivement
- ASC_t total de BIC au 3T sont diminuées de 41 % comparées à celle d'un adulte non prégnant

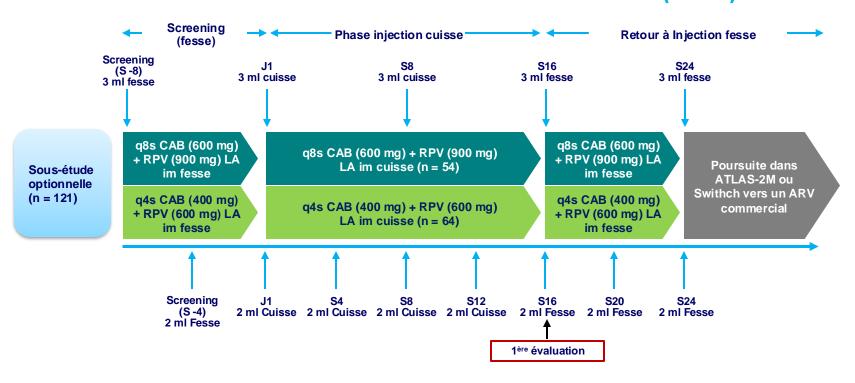
BIC/FTC/TAF pendant la grossesse : PK, efficacité et tolérance (3)

- PK de FTC et TAF aux 2T et 3T vs PP :
 - FTC : \(\sigma \text{ASC}_t \text{ total de 69,2 %} \)
 - TAF : \(\sigma \) ASC_t total 69,7 % et libre 89,2 %
 - TFV-DP : comparables mais variables +++
- Malgré ces diminutions, les recommandations US DHHS ne mentionnent aucun ajustement de dose de FTC et TAF au cours de la grossesse car CV < 50 c/ml*
- PK de BIC chez le nouveau-né
 - Rapport materno-fœtal des concentrations plasmatiques de BIC à l'accouchement (moyenne, CV %) = 1,4 (35 %) (n = 29 couples)
 - Demi-vie médiane = 43,1 h (n = 10) très allongée vs PP
 (18 h)

Paramètres PK Plasma de FTC et TAF

Paramètres PK % RMG* (IC 90 %)	FTC : 3 ^{ème} T vs S12 PP	TAF : 3 ^{ème} T vs S12 PP
ASC _t total	69,2 (65,9 – 72,7)	69,7 (58,6 – 82,9)
ASC _t libre	-	89,2 (78,2 – 101,6)
C _{max}	77,5 (70,3 – 85,3)	57,1 (46,0 – 70,9)
C_{min}	64,7 (59,3 – 70,6)	-

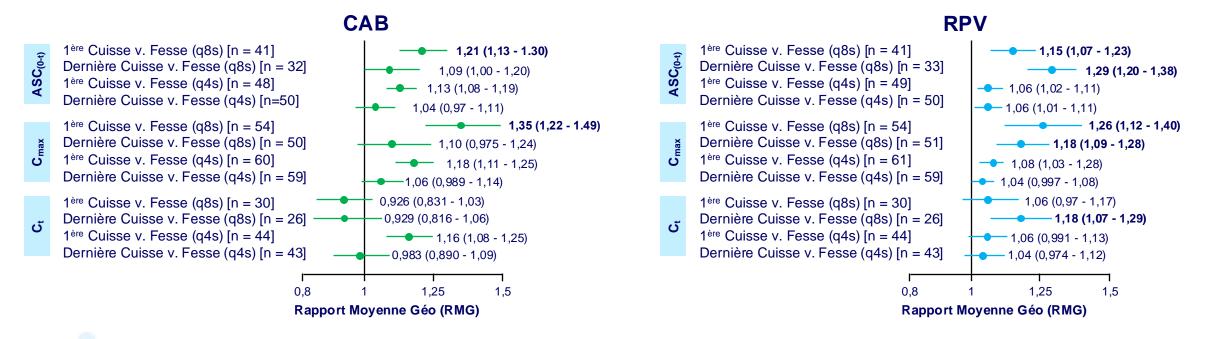
^{*} RMG : rapport des moyennes géométriques


- Bonne tolérance chez les mères (n = 33) et les nouveau-nés (n = 29), sans aucun arrêt de traitement :
 - Majorité d'El de grade 1/2 sauf 1 grade 3 chez 1 nouveau-né (asphyxie) et 2 grade > 3 chez 2 mères (1 diabète et fièvre)
 - 1 fausse couche
 - El biologiques de grade 3 : 5 hématuries et 1 glycosurie

CAB + RPV im dans le vaste externe de PVVIH-1 contrôlés (1)

 Sous-étude de phase 3b logée dans ATLAS-2M (NCT03299049) chez des PVVIH-1 volontaires ayant reçu > 3 ans d'im glutéales

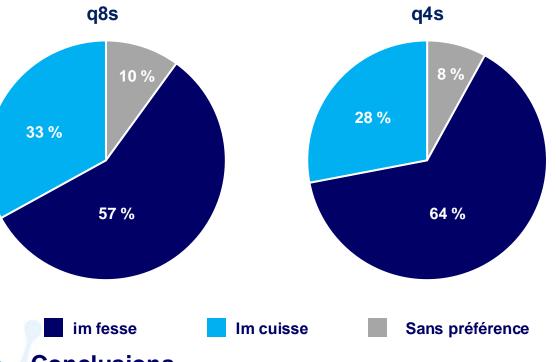
Schéma d'étude d'administration im dans le vaste externe (cuisse)



Au total, 118 patients (q8s n = 54 et q4s n = 64) ont été inclus, 48 ans, 38 % femmes et IMC 25 kg/m² (médianes)

CAB + RPV im dans le vaste externe de PVVIH-1 contrôlés (2)

Comparaison des paramètres PK plasma de CAB et RPV selon le site d'im



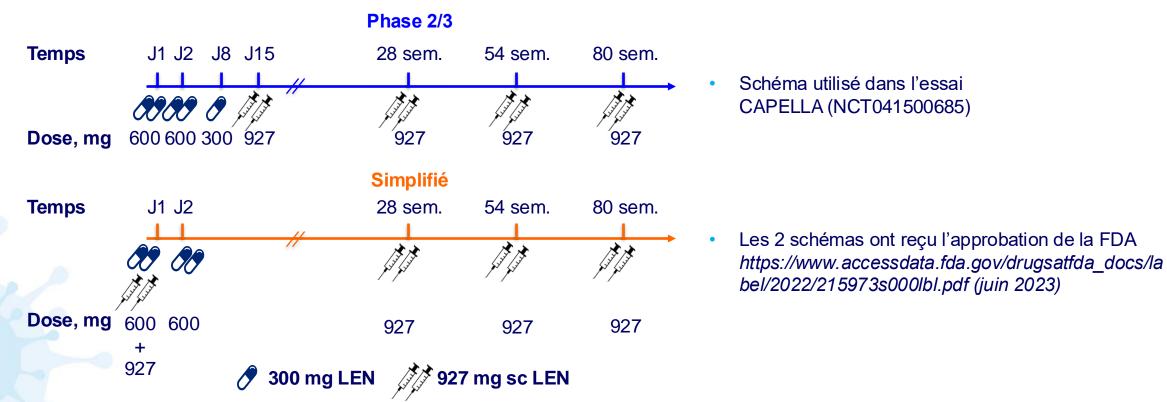
- Les concentrations obtenues après administration dans la cuisse étaient plus élevées sans que la différence PK plasma post-im soit considérée comme cliniquement pertinente
- Les C_{min} de CAB et RPV sont toujours restées > aux CI₉₀ (PA-CI₉₀) ajustées sur la fixation protéique plasmatique (CAB 0,166 μg/ml et RPV 12 ng/ml)

CAB + RPV im dans le vaste externe de PVVIH-1 contrôlés (3)

Préférences des patients selon le lieu d'im

- Au total, 30 % des patients préfèrent l'im dans la cuisse, pour des raisons de facilité d'injections (71 %), une douleur moindre suivant l'injection (q8s 65 % et q4s 59 %) ou pdt l'injection (q8s 47 % et q4s 65 %)
- A l'inverse, les raisons de préférer l'im glutéale sont une douleur moindre suivant l'injection (q8s 66 % et q4s 64 %) ou pdt l'injection (q8s 72 % et q4s 46 %) et une moindre douleur musculaire à la marche ou durant l'activité physique (q8s 41 % et q4s 49 %)

- Chez ces PVVIH-1 volontaires ayant reçu ≥ 3 ans CAB + RPV im glutéales, aucun échec virologique confirmé post-im cuisse et maintien du contrôle virologique (CV < 50 c/ml) à S16 du début de cette sous-étude (q8s 94,4 % et q4s 95,3 %)</p>
- Tolérance jugée acceptable et réactions au site d'injection légères à modérées



PK de population du nouveau schéma d'administration simplifié de lenacapavir (1)

Objectifs

- Comparer les PK plasma de LEN du schéma d'administration initial de phase 2/3 avec celles d'un nouveau schéma simplifié dans lequel administrations orales et sc débutent simultanément
- Evaluer la tolérance des 2 schémas d'administration dans les 2 cohortes

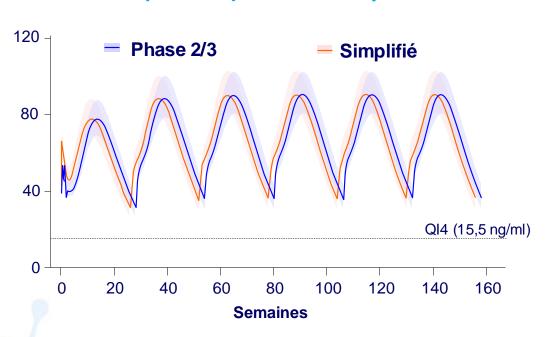
Schéma des études

PK de population du nouveau schéma d'administration simplifié de lenacapavir (2)

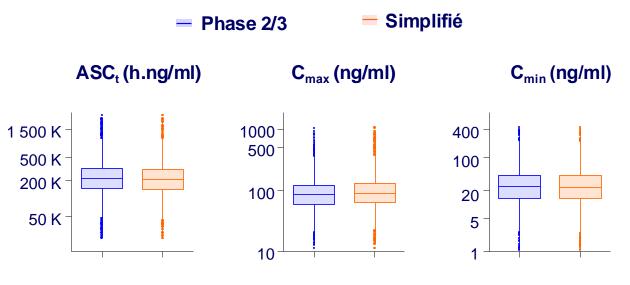
Méthode

- Modèle PK de population à 2 compartiments avec absorption d'ordre 1, un compartiment de transit pour l'absorption sc et une élimination linéaire, a été utilisé pour simuler les PK plasmatiques de LEN
- Comparaison des ASC, C_{max} et C_{min} de LEN entre les schémas de phase 2/3 et simplifié

Paramètres PK Plasma simulés de LEN dans les 2 schémas


	Schéma de la phase 2/3			Schéma simplifié		
Paramètres PK moyens (CV %)	J1-J15	J15-fin M6	Etat d'équilibre	J1-J15	J15-fin M6	Etat d'équilibre
ASC _t (h.ng/ml)	15 600 (52,9)	250 000 (66,6)	300 000 (68,5)	18 800 (53,6)	238 000 (67,5)	300 000 (68,5)
C _{max} (ng/ml)	69,6 (56,0)	87,0 (71,8)	97,2 (70,3)	80,1 (55,7)	87,1 (71,9)	97,2 (70,3)
C _{min} (ng/ml)	35,9 (56,8)	32,7 (88,0)	36,2 (90,6)	49,0 (57,9)	32,7 (88,0)	36,2 (90,6)

- Les IC 90 % les plus bas des C_{min} de LEN étaient toujours > au seuil de 15,5 ng/ml (QI4) pour les 2 schémas comparés (QI4 = 4 x CE₉₅ ajustée sur la fixation protéique sur cellules MT-4 \sim 3,87 ng/ml)
- L'état d'équilibre est atteint après la 2^e injection sc avec un facteur d'accumulation x 1,2



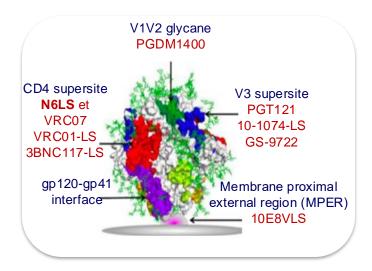
PK de population du nouveau schéma d'administration simplifié de lenacapavir (3)

Profils PK plasma moyens (ng/ml) simulés de LEN (IC 90 %) en doses répétées

Paramètres PK plasma moyens simulés de LEN (IC 90 %) en doses répétées

- Les profils PK simulés de LEN après la 1ère injection sc et à l'état d'équilibre étaient comparables entre le schéma initial (phase 2/3) et le nouveau schéma simplifié
- Bonne tolérance de LEN dans les 2 cohortes.
- Ces données supportent l'utilisation du schéma simplifié pour les futurs traitements ARV et PrEP de LEN

PK et tolérance d'un nouveau bNAb N6LS avec rHuPH20 administré en sc (1)


Rappels

- N6 est un Ac humanisé largement neutralisant (bNAb) originaire d'un patient
 VIH+ depuis 21 ans, jamais traité par ARV
- LS correspond à la mutation M428L/N434S introduite sur l'extrémité
 C-terminale de la chaine lourde (région constante) pour allonger la demi-vie
- N6LS est un bNAb de la classe de VRC01 ciblant le « CD4 binding site » au niveau de la glycoprotéine d'enveloppe d'HIV-1
- N6LS est plus efficace que VRC01, neutralisant plus de 98 % des souches virales sur un panel de 181 pseudovirus
- N6LS à des doses de 5, 20 ou 40 mg/kg en iv et 5 mg/kg en sc a montré une bonne tolérance chez 22 sujets avec une T_{1/2} sérique de 40 jours

Objectifs

- Etude de phase 1 (NCT03538626) visant à étudier PK et tolérance de N6LS par voies iv et sc chez des adultes sains (18 - 50 ans)
- Evaluation chez 10 sujets supplémentaires d'administrations sc avec une hyaluronidase PH20 humaine recombinante (2000 U/ml de rHuPH20), ayant pour rôle une dégradation de l'acide hyaluronique du tissu local injecté permettant une délivrance plus rapide, une dose plus élevée (5 à 20 mg/kg) et un volume plus important par voie sc

Localisation des sites des bNAbs sur la gp120

Leone P, HIV Glasgow 2022, Abs. 034

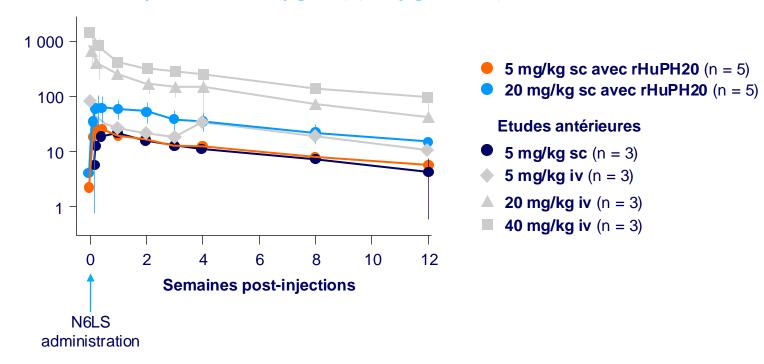
PK et tolérance d'un nouveau bNAb N6LS avec rHuPH20 administré en sc (2)

Schéma des études

Groupe	Sujets	Produits é	Schéma de doses			
		N6LS dose et voie d'adm	rHuPH20 dose	J0	S12	S24
1	3	5 mg/kg iv	-	X		
2	4	5 mg/kg sc	-	X		
3	3	20 mg/kg iv	-	X		
4	3	40 mg/kg iv	-	X		
5	5	5 mg/kg sc	-	X	X	Χ
6	5	20 mg/kg iv	-	X	Χ	Χ
7	5	5 mg/kg sc	2000 U/ml	X		
8	5	20 mg/kg sc	2000 U/ml	X		
Total	33					

Résultats de tolérance

Immédiatement post-injection


48h post-injection

- Erythème au site d'injection chez 10 sujets recevant N6LS avec rHuPH20, spontanément résolutif en 1 à 30 jours post-injection
 - 5 mg/kg sc : 1 léger, 3 modérés et 1 sévère
 - 20 mg/kg sc : 1 modéré et 4 sévères
- Aucun autre El

PK et tolérance d'un nouveau bNAb N6LS avec rHuPH20 administré en sc (3)

Profils PK sériques de N6LS (μ g/ml) (moy géo \pm ET)

- PK sériques de N6LS (5 mg/kg sc) comparables +/- rHuPH20, avec biodisponibilité de l'ordre de 50 à 65 %
- T_{1/2} estimées de l'ordre de 36 46 js (- rHuPH20) et 42 57 js (+ rHuPH20)
- L'addition de rHuPH20 ne semble pas impacter l'activité neutralisante de N6LS sur des pseudovirus CNE59 (sous-type AE) et PVO.04 (sous-type B)
- Cette étude valide la possibilité de la voie sc, avec la perspective d'utiliser des doses et volumes plus élevés dans des indications de PrEP et traitement en auto-administration de ce bNAb

Merci de votre attention!